44 lines
1.4 KiB
Python
44 lines
1.4 KiB
Python
#!/bin/env python
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
def p_meet_positive(groupsize:int):
|
|
'''
|
|
Naive approach, only works if each individual gets tested.
|
|
'''
|
|
active_cases = 777.69 # 7 day incidence rate
|
|
population_size = 100000 # sample size -> per 100k
|
|
p_positive = active_cases / population_size
|
|
|
|
return (1 - ( 1 - p_positive )**groupsize) * 100
|
|
|
|
def p_meet_positive_bayes(groupsize:int):
|
|
'''
|
|
Bayesian approach
|
|
'''
|
|
n_positive_tests = 1863.6 # number of positive tests in the last 14 days
|
|
n_tests = 7366.1 # total number of tests in the last 14 days
|
|
n_population = 100000 # sample size -> per 100k for switzerland
|
|
p_test_positive = 0.3 # probability of a positive person getting tested (0.5 is optimistic...)
|
|
|
|
p_positive_test = n_positive_tests / n_tests
|
|
p_test = n_tests / n_population
|
|
p_positive = p_positive_test * p_test / p_test_positive
|
|
|
|
return (1 - ( 1 - p_positive )**groupsize) * 100
|
|
|
|
def plot_data(data):
|
|
plt.plot(data)
|
|
plt.title("likelihood of having a covid positive in groupsize of n")
|
|
plt.xlabel("group size / n")
|
|
plt.ylabel("probability / %")
|
|
plt.grid(linestyle='--', linewidth='0.1')
|
|
plt.show()
|
|
|
|
data = []
|
|
for i in range(1, 70):
|
|
data.append(p_meet_positive_bayes(i))
|
|
print(f'The chance of meeting a positive in a group of {i} is: {p_meet_positive_bayes(i)}%')
|
|
|
|
plot_data(data)
|