Files
covidrisk/covidrisk.py
2021-11-30 15:12:51 +01:00

53 lines
1.7 KiB
Python
Executable File

#!/bin/env python
import matplotlib.pyplot as plt
def get_data():
n_14_day_tests = 7366.1
n_14_day_positive_tests = (18.2 + 7.1) / 100 * n_14_day_tests
return (n_14_day_tests, n_14_day_positive_tests)
def p_meet_positive(groupsize:int):
'''
Naive approach, only works if each individual gets tested.
'''
active_cases = 777.69 # 7 day incidence rate
population_size = 100000 # sample size -> per 100k
p_positive = active_cases / population_size
return (1 - ( 1 - p_positive )**groupsize) * 100
def p_meet_positive_bayes(groupsize:int, n_positive_tests:float, n_tests:float):
'''
Bayesian approach
'''
#n_positive_tests = n_tests_pos # number of positive tests in the last 14 days
#n_tests = n_tests_tot # total number of tests in the last 14 days
n_population = 100000 # sample size -> per 100k for switzerland
p_test_positive = 0.3 # probability of a positive person getting tested (0.5 is optimistic...)
p_positive_test = n_positive_tests / n_tests
p_test = n_tests / n_population
p_positive = p_positive_test * p_test / p_test_positive
return (1 - ( 1 - p_positive )**groupsize) * 100
def plot_data(data):
plt.plot(data)
plt.title("likelihood of having a covid positive in groupsize of n")
plt.xlabel("group size / n")
plt.ylabel("probability / %")
plt.grid(linestyle='--', linewidth='0.1')
plt.show()
if __name__ == "__main__":
tests, pos = get_data()
data = []
for i in range(1, 70):
data.append(p_meet_positive_bayes(i, tests, pos))
print(f'The chance of meeting a positive in a group of {i} is: {p_meet_positive_bayes(i, tests, pos)}%')
plot_data(data)