53 lines
1.7 KiB
Python
Executable File
53 lines
1.7 KiB
Python
Executable File
#!/bin/env python
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
def get_data():
|
|
n_14_day_tests = 7366.1
|
|
n_14_day_positive_tests = (18.2 + 7.1) / 100 * n_14_day_tests
|
|
return (n_14_day_tests, n_14_day_positive_tests)
|
|
|
|
def p_meet_positive(groupsize:int):
|
|
'''
|
|
Naive approach, only works if each individual gets tested.
|
|
'''
|
|
active_cases = 777.69 # 7 day incidence rate
|
|
population_size = 100000 # sample size -> per 100k
|
|
p_positive = active_cases / population_size
|
|
|
|
return (1 - ( 1 - p_positive )**groupsize) * 100
|
|
|
|
def p_meet_positive_bayes(groupsize:int, n_positive_tests:float, n_tests:float):
|
|
'''
|
|
Bayesian approach
|
|
'''
|
|
#n_positive_tests = n_tests_pos # number of positive tests in the last 14 days
|
|
#n_tests = n_tests_tot # total number of tests in the last 14 days
|
|
n_population = 100000 # sample size -> per 100k for switzerland
|
|
p_test_positive = 0.3 # probability of a positive person getting tested (0.5 is optimistic...)
|
|
|
|
p_positive_test = n_positive_tests / n_tests
|
|
p_test = n_tests / n_population
|
|
p_positive = p_positive_test * p_test / p_test_positive
|
|
|
|
return (1 - ( 1 - p_positive )**groupsize) * 100
|
|
|
|
def plot_data(data):
|
|
plt.plot(data)
|
|
plt.title("likelihood of having a covid positive in groupsize of n")
|
|
plt.xlabel("group size / n")
|
|
plt.ylabel("probability / %")
|
|
plt.grid(linestyle='--', linewidth='0.1')
|
|
plt.show()
|
|
|
|
if __name__ == "__main__":
|
|
|
|
tests, pos = get_data()
|
|
|
|
data = []
|
|
for i in range(1, 70):
|
|
data.append(p_meet_positive_bayes(i, tests, pos))
|
|
print(f'The chance of meeting a positive in a group of {i} is: {p_meet_positive_bayes(i, tests, pos)}%')
|
|
|
|
plot_data(data)
|