----------------------------------------------------------------------------- -- -- Decoder für Drehgeber -- ----------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity rotary_dec is Port ( clk : in std_logic; -- Systemtakt A : in std_logic; -- Spur A B : in std_logic; -- Spur B right : out std_logic; -- Zaehlrichtung ce : out std_logic); -- Clock Enable end rotary_dec; architecture Behavioral of rotary_dec is signal a_old, b_old: std_logic := '0'; signal a_debounced_reg, a_debounced_next, b_debounced_reg, b_debounced_next : std_logic := '0'; signal counter_a_reg, counter_a_next, counter_b_reg, counter_b_next: unsigned(23 downto 0) := (others => '0'); constant count_max: unsigned(23 downto 0) := to_unsigned(500000,24); --10ms begin process(clk) begin if rising_edge(clk) then counter_a_reg <= counter_a_next; counter_b_reg <= counter_b_next; a_debounced_reg <= a_debounced_next; b_debounced_reg <= b_debounced_next; a_old <= a_debounced_reg; b_old <= b_debounced_reg; end if; end process; process(A,B, a_debounced_reg, b_debounced_reg, counter_a_reg, counter_b_reg) begin if(A /= a_debounced_reg and counter_a_reg > count_max) then a_debounced_next <= A; counter_a_next <= (others => '0'); else a_debounced_next <= a_debounced_reg; counter_a_next <= counter_a_reg + 1; end if; if(B /= b_debounced_reg and counter_b_reg > count_max) then b_debounced_next <= B; counter_b_next <= (others => '0'); else b_debounced_next <= b_debounced_reg; counter_b_next <= counter_b_reg + 1; end if; end process; -- Dekodierung der Ausgaenge process(a_debounced_reg, b_debounced_reg, a_old, b_old) variable state: std_logic_vector(3 downto 0); begin state := a_debounced_reg & b_debounced_reg & a_old & b_old; case state is when "0001" => right <= '0'; ce <= '1'; when "0010" => right <= '1'; ce <= '1'; when others => right <= '0'; ce <= '0'; end case; end process; end Behavioral;