Improved documentation of all vhd modules except testbenches and lcd driver
This commit is contained in:
159
controller.vhd
159
controller.vhd
@@ -25,44 +25,47 @@ entity controller is
|
||||
end controller;
|
||||
|
||||
architecture Behavioral of controller is
|
||||
type states is(S_WAIT,
|
||||
-- FSM with the following states:
|
||||
type states is(S_WAIT, -- wait till the lcd is no longer busy, and returns in a specific state afterwards
|
||||
S_FORM_PREF, -- prints the form prefix ("Form:")
|
||||
S_FREQ_PREF, -- frequenz prefix ("Freq: 00000 Hz")
|
||||
S_FORM_CONT, -- form content ("Rechteck, Sinus...")
|
||||
S_FREQ_CONT, -- frequenz content ("-----")
|
||||
S_IDLE );
|
||||
S_IDLE ); -- controller is idle and waits on user input
|
||||
|
||||
signal state_reg, state_next : states := S_WAIT;
|
||||
signal ret_state_reg, ret_state_next: states := S_FORM_PREF;
|
||||
signal state_reg, state_next : states := S_WAIT; -- Current State
|
||||
signal ret_state_reg, ret_state_next: states := S_FORM_PREF; -- State to return to, after S_WAIT
|
||||
|
||||
----- Edge detection registers -----
|
||||
signal btn_old_reg, btn_old_next : std_logic := '0';
|
||||
signal enc_old_reg, enc_old_next: std_logic :='0';
|
||||
signal busy_old_reg, busy_old_next : std_logic := '0';
|
||||
signal form_old_reg, form_old_next : unsigned (1 downto 0) := (others => '0');
|
||||
|
||||
--digitnr which is currently edited 0-4
|
||||
signal digpos_reg, digpos_next : unsigned(2 downto 0) := (others => '0');
|
||||
signal charcnt_reg, charcnt_next : unsigned(3 downto 0) := (others => '0');
|
||||
|
||||
-- array 5x 4bit(0-9)
|
||||
signal digpos_reg, digpos_next : unsigned(2 downto 0) := (others => '0'); -- digitnr which is currently edited 0-4
|
||||
signal charcnt_reg, charcnt_next : unsigned(3 downto 0) := (others => '0'); -- character number which is currently being written out
|
||||
|
||||
-- Decimal value (0-9) of the sigle frequency digits (array 5x 4bit)
|
||||
type storage_digit is array (0 to 7) of unsigned (3 downto 0);
|
||||
signal digit_reg, digit_next : storage_digit := (others => (others => '0'));
|
||||
|
||||
signal lcd_newchar_reg,lcd_newchar_next : std_logic := '0';
|
||||
signal lcd_newpos_reg,lcd_newpos_next : std_logic := '0';
|
||||
signal lcd_data_reg, lcd_data_next: unsigned(7 downto 0) :=(others => '0');
|
||||
signal lcd_newchar_reg,lcd_newchar_next : std_logic := '0'; -- Register for the LCD Newchar signal
|
||||
signal lcd_newpos_reg,lcd_newpos_next : std_logic := '0'; -- Register for the LCD Newpos signal
|
||||
signal lcd_data_reg, lcd_data_next: unsigned(7 downto 0) :=(others => '0'); -- Register for the LCD Databus signal
|
||||
|
||||
signal freq_out_reg, freq_out_next : unsigned (16 downto 0) := (others => '0');
|
||||
signal freq_out_reg, freq_out_next : unsigned (16 downto 0) := (others => '0'); -- Register for the frequency ouput (in hz)
|
||||
|
||||
----------------Constants---------------------------------
|
||||
|
||||
-- Signal Form Prefix:
|
||||
type character_array_short is array (0 to 7) of character;
|
||||
constant str_form_pref : character_array_short := ( 'F', 'o', 'r','m',':', others => ' ' );
|
||||
|
||||
-- Signal Frequency Prefix/Postfix:
|
||||
type character_array_long is array (0 to 15) of character;
|
||||
constant str_freq_pref : character_array_long := ( 'F', 'r', 'e','q',':',' ','0','0','0','0','0',' ','H','z', others => ' ' );
|
||||
|
||||
-- Signal Form names:
|
||||
type character_form_array is array (0 to 3, 0 to 7) of character;
|
||||
constant str_form : character_form_array := (
|
||||
('S','q','u','a','r','e',' ',' '),
|
||||
@@ -71,9 +74,11 @@ architecture Behavioral of controller is
|
||||
('S','i','n','e',' ',' ',' ',' ')
|
||||
);
|
||||
|
||||
-- Possible improvement: Write a helper function which initializes those character arrays from a string
|
||||
|
||||
begin
|
||||
|
||||
-- State register process (sequential)
|
||||
proc1: process(clk,rst)
|
||||
begin
|
||||
if(rst='1') then
|
||||
@@ -82,7 +87,6 @@ begin
|
||||
|
||||
btn_old_reg <= '0';
|
||||
enc_old_reg <='0';
|
||||
busy_old_reg <= '0';
|
||||
form_old_reg <= "00";
|
||||
|
||||
charcnt_reg <= (others => '0');
|
||||
@@ -92,6 +96,7 @@ begin
|
||||
|
||||
freq_out_reg <=(others => '0');
|
||||
|
||||
-- On reset: wait on display startup and then start with S_FORM_PREF state
|
||||
state_reg <= S_WAIT;
|
||||
ret_state_reg <= S_FORM_PREF;
|
||||
|
||||
@@ -101,7 +106,6 @@ begin
|
||||
|
||||
btn_old_reg <= btn_old_next;
|
||||
enc_old_reg <= enc_old_next;
|
||||
busy_old_reg <= busy_old_next;
|
||||
form_old_reg <= form_old_next;
|
||||
|
||||
charcnt_reg <= charcnt_next;
|
||||
@@ -117,143 +121,142 @@ begin
|
||||
end if;
|
||||
end process proc1;
|
||||
|
||||
|
||||
|
||||
freq_out <= freq_out_reg;
|
||||
lcd_data <= lcd_data_reg;
|
||||
lcd_newchar <= lcd_newchar_reg;
|
||||
lcd_newpos <= lcd_newpos_reg;
|
||||
|
||||
NSL: process(digit_reg,enc_right,enc_ce,enc_btn,digpos_reg,btn_old_reg, charcnt_reg, lcd_busy, lcd_data_reg, busy_old_reg, state_reg, ret_state_reg, enc_ce,enc_old_reg, form_old_reg, form)
|
||||
-- Next State logic process (combinational)
|
||||
NSL: process(digit_reg,enc_right,enc_ce,enc_btn,digpos_reg,btn_old_reg, charcnt_reg, lcd_busy, lcd_data_reg, state_reg, ret_state_reg, enc_ce,enc_old_reg, form_old_reg, form)
|
||||
begin
|
||||
-- To avoid latches the most signals are assigned with their previous value (Exceptions marked)
|
||||
digit_next <= digit_reg;
|
||||
digpos_next <= digpos_reg;
|
||||
|
||||
|
||||
busy_old_next <= lcd_busy;
|
||||
btn_old_next <= btn_old_reg;
|
||||
enc_old_next <= enc_old_reg;
|
||||
form_old_next <= form_old_reg;
|
||||
|
||||
|
||||
charcnt_next <= charcnt_reg;
|
||||
lcd_newchar_next <= '0';
|
||||
lcd_newpos_next <= '0';
|
||||
lcd_newchar_next <= '0'; -- next newchar is always 0, becasue normally we dont want to send anything
|
||||
lcd_newpos_next <= '0'; -- same for newpos
|
||||
lcd_data_next <= lcd_data_reg;
|
||||
|
||||
|
||||
state_next <= state_reg;
|
||||
ret_state_next <= ret_state_reg;
|
||||
|
||||
-- The next statement produces two warnings which can be safely ignored:
|
||||
-- xst:643 - The result of a <...>-bit multiplication is partially used...
|
||||
freq_out_next <= resize(
|
||||
resize(digit_reg(0), 4)
|
||||
-- Put together the frequency as a 17 bit vector (in hz) out of the single decimal places
|
||||
freq_out_next <= resize( resize(digit_reg(0), 4)
|
||||
+ resize(digit_reg(1) ,4)* 10
|
||||
+ resize(digit_reg(2) ,7)* 100
|
||||
+ resize(digit_reg(3) ,10) * 1000
|
||||
+ resize(digit_reg(4) ,14) * 10000
|
||||
, 17);
|
||||
,17);
|
||||
|
||||
|
||||
case state_reg is
|
||||
when S_WAIT => -- switch on current state
|
||||
if(lcd_busy = '0' and busy_old_reg ='1' ) then
|
||||
state_next<= ret_state_reg;
|
||||
case state_reg is -- switch on current state
|
||||
when S_WAIT => -- lcd is currently busy
|
||||
if(lcd_busy = '0') then --lcd is no longer busy
|
||||
state_next<= ret_state_reg; -- return to state given by ret_state
|
||||
end if;
|
||||
|
||||
when S_FORM_PREF =>
|
||||
state_next <= S_WAIT;
|
||||
if(charcnt_reg < 7 ) then
|
||||
charcnt_next <= charcnt_reg + 1;
|
||||
ret_state_next <= S_FORM_PREF;
|
||||
when S_FORM_PREF => -- print the form prefix
|
||||
state_next <= S_WAIT; -- always wait for lcd_busy=0 after this state
|
||||
if(charcnt_reg < 7 ) then -- not 8 characters written yet: Send characters
|
||||
charcnt_next <= charcnt_reg + 1; -- increase character position
|
||||
ret_state_next <= S_FORM_PREF; -- return into this state after wait
|
||||
-- Output current character (Multiplexer). Implemented as an array lookup with cast from character to ascii value
|
||||
lcd_data_next <= to_unsigned(character'pos(str_form_pref(to_integer(resize(charcnt_reg,3)))),8);
|
||||
lcd_newchar_next <= '1';
|
||||
else
|
||||
charcnt_next <= (others => '0');
|
||||
lcd_data_next <= x"40"; --Start adress for line 2
|
||||
lcd_newpos_next <= '1';
|
||||
ret_state_next <= S_FREQ_PREF;
|
||||
lcd_newchar_next <= '1'; -- signal the lcd driver that a new character is ready for writing
|
||||
else -- all 8 characters written: Change adress to line 2 (as preparation for S_FREQ_PREF)
|
||||
charcnt_next <= (others => '0'); -- reset charcnt
|
||||
lcd_data_next <= x"40"; -- Start adress for line 2
|
||||
lcd_newpos_next <= '1'; -- signal the lcd driver that a new position is available
|
||||
ret_state_next <= S_FREQ_PREF; -- continue with S_FREQ_PREF state
|
||||
end if;
|
||||
when S_FREQ_PREF =>
|
||||
if(charcnt_reg < 15 ) then
|
||||
|
||||
when S_FREQ_PREF => -- print the frequency prefix/postfix
|
||||
if(charcnt_reg < 15 ) then -- not all 16 characters written yet
|
||||
charcnt_next <= charcnt_reg + 1;
|
||||
state_next <= S_WAIT;
|
||||
ret_state_next <= S_FREQ_PREF;
|
||||
lcd_data_next <= to_unsigned(character'pos(str_freq_pref(to_integer(charcnt_reg))),8);
|
||||
lcd_newchar_next <= '1';
|
||||
else
|
||||
else -- all charcters written
|
||||
charcnt_next <= (others => '0');
|
||||
state_next <= S_FORM_CONT;
|
||||
state_next <= S_FORM_CONT; -- print the Form content now
|
||||
end if;
|
||||
|
||||
|
||||
when S_FORM_CONT =>
|
||||
when S_FORM_CONT => -- print the form content
|
||||
state_next <= S_WAIT;
|
||||
ret_state_next <= S_FORM_CONT;
|
||||
charcnt_next <= charcnt_reg + 1;
|
||||
if(charcnt_reg < 1 ) then
|
||||
lcd_data_next <= x"06"; --adress character 7 on line 1
|
||||
if(charcnt_reg < 1 ) then -- Step 1: Set address
|
||||
lcd_data_next <= x"06"; -- adress character 7 on line 1
|
||||
lcd_newpos_next <= '1';
|
||||
elsif(charcnt_reg < 9) then
|
||||
elsif(charcnt_reg < 9) then -- Step 2 (8x): Print a character of the form
|
||||
lcd_data_next <= to_unsigned(character'pos(str_form(to_integer(form),to_integer(resize(charcnt_reg-1,3)))),8);
|
||||
lcd_newchar_next <= '1';
|
||||
else
|
||||
else -- Step 3: Set adress/cursor back to current digit
|
||||
charcnt_next <= (others => '0');
|
||||
lcd_data_next <= x"4A" - digpos_reg; -- adress character 11 on line 2 - digit position
|
||||
lcd_newpos_next <= '1';
|
||||
ret_state_next <= S_IDLE;
|
||||
end if;
|
||||
when S_FREQ_CONT =>
|
||||
|
||||
when S_FREQ_CONT => -- print the frequency content
|
||||
state_next <= S_WAIT;
|
||||
if(charcnt_reg < 1 ) then
|
||||
if(charcnt_reg < 1 ) then -- Step 1: Set address for current digit
|
||||
charcnt_next <= charcnt_reg + 1;
|
||||
ret_state_next <= S_FREQ_CONT;
|
||||
lcd_data_next <= x"4A" - digpos_reg; -- adress character 11 on line 2 - digit position
|
||||
lcd_newpos_next <= '1';
|
||||
elsif(charcnt_reg = 1) then
|
||||
elsif(charcnt_reg = 1) then -- Step 2: Print current digit
|
||||
charcnt_next <= charcnt_reg + 1;
|
||||
ret_state_next <= S_FREQ_CONT;
|
||||
lcd_data_next <= to_unsigned(character'pos('0'),8) + digit_reg(to_integer(digpos_reg));
|
||||
lcd_newchar_next <= '1';
|
||||
else
|
||||
else -- Step 3: Reset adress/cursor back to current digit (auto increment of display cannot be disabled)
|
||||
ret_state_next <= S_IDLE;
|
||||
charcnt_next <= (others => '0');
|
||||
lcd_data_next <= x"4A" - digpos_reg; -- adress character 11 on line 2 - digit position
|
||||
lcd_newpos_next <= '1';
|
||||
end if;
|
||||
when S_IDLE =>
|
||||
|
||||
when S_IDLE => -- Controller is idle and wait on user input
|
||||
-- Update edge dectection helper registers:
|
||||
btn_old_next <= enc_btn;
|
||||
enc_old_next <= enc_ce;
|
||||
form_old_next <= form;
|
||||
|
||||
if(form /= form_old_reg) then
|
||||
state_next <= S_FORM_CONT;
|
||||
elsif(enc_ce='1' and enc_old_reg ='0') then
|
||||
if(enc_right='1') then
|
||||
if(digit_reg(to_integer(digpos_reg)) = to_unsigned(9,4)) then
|
||||
digit_next(to_integer(digpos_reg)) <= to_unsigned(0,4);
|
||||
else
|
||||
digit_next(to_integer(digpos_reg)) <= digit_reg(to_integer(digpos_reg)) + 1;
|
||||
if(form /= form_old_reg) then -- form changed
|
||||
state_next <= S_FORM_CONT; -- print form
|
||||
elsif(enc_ce='1' and enc_old_reg ='0') then -- positive egde on encoder clock enable
|
||||
if(enc_right='1') then -- encoder was turned right
|
||||
if(digit_reg(to_integer(digpos_reg)) = to_unsigned(9,4)) then -- digit value = 9
|
||||
digit_next(to_integer(digpos_reg)) <= to_unsigned(0,4); -- set digit value to 0
|
||||
else -- digit value < 9
|
||||
digit_next(to_integer(digpos_reg)) <= digit_reg(to_integer(digpos_reg)) + 1; -- increase digit value
|
||||
end if;
|
||||
else
|
||||
if(digit_reg(to_integer(digpos_reg)) = to_unsigned(0,4)) then
|
||||
digit_next(to_integer(digpos_reg)) <= to_unsigned(9,4);
|
||||
else
|
||||
digit_next(to_integer(digpos_reg)) <= digit_reg(to_integer(digpos_reg)) -1;
|
||||
else -- encoder was turned left
|
||||
if(digit_reg(to_integer(digpos_reg)) = to_unsigned(0,4)) then -- digit value = 0
|
||||
digit_next(to_integer(digpos_reg)) <= to_unsigned(9,4); -- set digit value to 9
|
||||
else -- digit value > 0
|
||||
digit_next(to_integer(digpos_reg)) <= digit_reg(to_integer(digpos_reg)) -1; -- decrease digit value
|
||||
end if;
|
||||
end if;
|
||||
state_next <= S_FREQ_CONT;
|
||||
elsif(enc_btn ='1' and btn_old_reg='0') then
|
||||
if(digpos_reg = to_unsigned(4,3)) then
|
||||
digpos_next <= to_unsigned(0,3);
|
||||
else
|
||||
digpos_next <= digpos_reg + 1;
|
||||
state_next <= S_FREQ_CONT; -- print frequency
|
||||
elsif(enc_btn ='1' and btn_old_reg='0') then -- positive edge on push button
|
||||
if(digpos_reg = to_unsigned(4,3)) then -- digit_pos = 4
|
||||
digpos_next <= to_unsigned(0,3); -- set digit pos = 0
|
||||
else -- digit pos < 4
|
||||
digpos_next <= digpos_reg + 1; -- increase digit pos
|
||||
end if;
|
||||
state_next <= S_FREQ_CONT;
|
||||
state_next <= S_FREQ_CONT; -- print frequency (also updates the cursor position)
|
||||
end if;
|
||||
|
||||
|
||||
when others => null; -- do nothing, if we are in a different state
|
||||
end case;
|
||||
|
||||
|
||||
46
dds.vhd
46
dds.vhd
@@ -25,66 +25,72 @@ entity dds is
|
||||
end dds;
|
||||
|
||||
architecture Behavioral of dds is
|
||||
signal m, idx : unsigned(acc_res -1 downto 0):= (others => '0');
|
||||
signal idx_phase : unsigned(phase_res-1 downto 0) := (others => '0');
|
||||
signal amp_rect, amp_saw, amp_tria, amp_sin : unsigned (adc_res-1 downto 0);
|
||||
signal m, idx : unsigned(acc_res -1 downto 0):= (others => '0'); -- phase jump size and accumulator (see Fundamentals of Direct Digital Synthesis for details about their function)
|
||||
signal idx_phase : unsigned(phase_res-1 downto 0) := (others => '0'); -- relevant (=leftmost) bits of the phase acccumulator
|
||||
signal amp_rect, amp_saw, amp_tria, amp_sin : unsigned (adc_res-1 downto 0); -- the current amplitudes of all 4 signal forms
|
||||
|
||||
-- Function to genenerate and store the sine wave in the rom.
|
||||
-- Current code: Only store 1/4 of a sine wave and use symmetries.
|
||||
-- Uncommented code: Store the entire sine wave (decrease adc_width to 8)
|
||||
type storage is array (((2**phase_res)/4)-1 downto 0) of unsigned (adc_res-2 downto 0);
|
||||
--type storage is array (((2**phase_res))-1 downto 0) of unsigned (adc_res-1 downto 0);
|
||||
function gen_sin_wave return storage is
|
||||
variable temp : storage;
|
||||
begin
|
||||
forLoop: for i in 0 to temp'high loop
|
||||
forLoop: for i in 0 to temp'high loop -- for each element in the array
|
||||
temp(i) := to_unsigned(integer(real((2**(adc_res-1))-1)*sin((real(i)*MATH_PI/2.0)/real(temp'high))),adc_res-1);
|
||||
--temp(i) := to_unsigned(integer(real(2**(adc_res-1) -1) + real((2**(adc_res-1))-1)*sin((real(i)*MATH_PI*2.0)/real(temp'high))),adc_res);
|
||||
|
||||
end loop;
|
||||
return temp;
|
||||
end function gen_sin_wave;
|
||||
constant sin_wave : storage := gen_sin_wave;
|
||||
constant sin_wave : storage := gen_sin_wave; -- rom for sin wave
|
||||
|
||||
begin
|
||||
|
||||
-- Calculate jump size according to input frequency
|
||||
-- m = fout*(2^n)/fclk = fout*((2^n)*(2^k)/fclk)/(2^k) with k=ceil(log2(fclk)), n=acc_res
|
||||
m <= resize( (resize(freq,64)
|
||||
*
|
||||
(shift_left(to_unsigned(1,64),acc_res + log2_int(clk_freq)) / clk_freq))
|
||||
/to_unsigned(2**log2_int(clk_freq),64),acc_res);
|
||||
|
||||
-- Amplitude of the square wave
|
||||
amp_rect <= to_unsigned(0,adc_res) when idx(acc_res-1)='0' else -- 0 for half of the time
|
||||
to_unsigned((2**adc_res)-1,adc_res); --1 for the rest
|
||||
|
||||
amp_rect <= to_unsigned(0,adc_res) when idx(acc_res-1)='0' else
|
||||
to_unsigned((2**adc_res)-1,adc_res);
|
||||
-- Amplitude of the sawtooth wave
|
||||
amp_saw <= idx(acc_res -1 downto acc_res - adc_res); -- Exactly the value of the uppermost bits of the phase acc
|
||||
|
||||
amp_saw <= idx(acc_res -1 downto acc_res - adc_res);
|
||||
-- Amplitude of the triangle wave
|
||||
amp_tria <= idx(acc_res -2 downto acc_res - adc_res - 1) -- The value of the uppermost bits, except the uppermost one (= double the frequency)
|
||||
when idx(acc_res-1)='0' else -- during half of the time
|
||||
((2**adc_res)-1)- (idx(acc_res -2 downto acc_res - adc_res - 1)); -- and the complement, the rest of the time
|
||||
|
||||
|
||||
amp_tria <= idx(acc_res -2 downto acc_res - adc_res) & "0"
|
||||
when idx(acc_res-1)='0' else
|
||||
((2**adc_res)-1)- (idx(acc_res -2 downto acc_res - adc_res) & "0");
|
||||
idx_phase <= idx(acc_res -1 downto acc_res - phase_res); -- take only the uppermost bits for the sine lookup
|
||||
|
||||
|
||||
|
||||
idx_phase <= idx(acc_res -1 downto acc_res - phase_res);
|
||||
|
||||
--amp_sin <= sin_wave(to_integer(idx_phase));
|
||||
-- Amplitude of the sine wave
|
||||
-- Code if we had stored the whole sinewave:
|
||||
-- amp_sin <= sin_wave(to_integer(idx_phase));
|
||||
-- Current Code (only 1/4 of the sine wave stored)
|
||||
amp_sin <= to_unsigned((2**(adc_res-1)) - 1,adc_res) + sin_wave(to_integer(idx_phase(phase_res-3 downto 0))) when idx_phase(phase_res-1 downto phase_res-2)="00" else
|
||||
to_unsigned((2**(adc_res-1)) - 1,adc_res) + sin_wave(to_integer(((2**(phase_res-2))-1) - idx_phase(phase_res-3 downto 0))) when idx_phase(phase_res-1 downto phase_res-2)="01" else
|
||||
to_unsigned((2**(adc_res-1)) - 1,adc_res) - sin_wave(to_integer(idx_phase(phase_res-3 downto 0))) when idx_phase(phase_res-1 downto phase_res-2)="10" else
|
||||
to_unsigned((2**(adc_res-1)) - 1,adc_res) - sin_wave(to_integer(((2**(phase_res-2))-1) - idx_phase(phase_res-3 downto 0)));
|
||||
|
||||
-- Output the selected amplitue using a multiplexer (00=Rectancle, 01=Sawtooth, 10=Triangle, 11=Sine)
|
||||
amp <= to_unsigned(0,adc_res) when freq = to_unsigned(0,freq_res) else
|
||||
amp_rect when form = "00" else
|
||||
amp_saw when form ="01" else
|
||||
amp_tria when form = "10" else
|
||||
amp_sin;
|
||||
|
||||
-- Process for the phase accumulator (sequential)
|
||||
P1: process(clk)
|
||||
begin
|
||||
if(rising_edge(clk)) then
|
||||
idx <= (idx+m);
|
||||
idx <= (idx+m); -- increment phase accumulator according to jump size. overflow is wanted.
|
||||
end if;
|
||||
end process P1;
|
||||
|
||||
|
||||
end Behavioral;
|
||||
|
||||
|
||||
40
rotary.vhd
40
rotary.vhd
@@ -23,44 +23,48 @@ end rotary_dec;
|
||||
|
||||
architecture Behavioral of rotary_dec is
|
||||
|
||||
signal a_old, b_old: std_logic := '0';
|
||||
signal a_debounced_reg, a_debounced_next, b_debounced_reg, b_debounced_next : std_logic := '0';
|
||||
signal btn_reg, btn_next: std_logic :='0';
|
||||
signal counter_a_reg, counter_a_next,
|
||||
signal a_old, b_old: std_logic := '0'; -- Registers for edge detection on debounced A, B signals
|
||||
signal a_debounced_reg, a_debounced_next, -- Registers for debouncing A, B signals
|
||||
b_debounced_reg, b_debounced_next : std_logic := '0';
|
||||
signal btn_reg, btn_next: std_logic :='0'; -- Registers for debouncing Button Press signal
|
||||
signal counter_a_reg, counter_a_next, -- Counters to smooth chittering = debounce signals
|
||||
counter_b_reg, counter_b_next,
|
||||
counter_btn_reg, counter_btn_next: unsigned(23 downto 0) := (others => '0');
|
||||
constant count_max: unsigned(23 downto 0) := to_unsigned(500000,24); --10ms
|
||||
constant count_max: unsigned(23 downto 0) := to_unsigned(500000,24); --Number of cycles during which a signal can't change it's value 50mhz*10ms= 500000 cycles
|
||||
|
||||
begin
|
||||
|
||||
-- State register process (sequential)
|
||||
process(clk)
|
||||
begin
|
||||
if rising_edge(clk) then
|
||||
counter_a_reg <= counter_a_next;
|
||||
counter_b_reg <= counter_b_next;
|
||||
counter_btn_reg <= counter_btn_next;
|
||||
|
||||
a_debounced_reg <= a_debounced_next;
|
||||
b_debounced_reg <= b_debounced_next;
|
||||
btn_reg <= btn_next;
|
||||
|
||||
a_old <= a_debounced_reg;
|
||||
b_old <= b_debounced_reg;
|
||||
btn_reg <= btn_next;
|
||||
end if;
|
||||
end process;
|
||||
|
||||
|
||||
btn_deb <= btn_reg;
|
||||
|
||||
-- Debounce process (combinational)
|
||||
process(A,B, a_debounced_reg, b_debounced_reg, counter_a_reg, counter_b_reg, btn_reg, btn, counter_btn_reg)
|
||||
begin
|
||||
|
||||
-- If signal a has changed (edge detection) and enough time passed since the last change
|
||||
if(A /= a_debounced_reg and counter_a_reg > count_max) then
|
||||
a_debounced_next <= A;
|
||||
counter_a_next <= (others => '0');
|
||||
else
|
||||
a_debounced_next <= a_debounced_reg;
|
||||
counter_a_next <= counter_a_reg + 1;
|
||||
a_debounced_next <= A; -- accept change
|
||||
counter_a_next <= (others => '0'); -- reset counter
|
||||
else -- singal has not changed, or not enough time has passed
|
||||
a_debounced_next <= a_debounced_reg; -- keep old signal value
|
||||
counter_a_next <= counter_a_reg + 1; -- increase counter by one
|
||||
end if;
|
||||
|
||||
-- Same as above for signal B
|
||||
if(B /= b_debounced_reg and counter_b_reg > count_max) then
|
||||
b_debounced_next <= B;
|
||||
counter_b_next <= (others => '0');
|
||||
@@ -69,6 +73,7 @@ begin
|
||||
counter_b_next <= counter_b_reg + 1;
|
||||
end if;
|
||||
|
||||
-- Same as above for button press signal
|
||||
if(btn /= btn_reg and counter_btn_reg > count_max) then
|
||||
btn_next <= btn;
|
||||
counter_btn_next <= (others => '0');
|
||||
@@ -80,16 +85,19 @@ begin
|
||||
end process;
|
||||
|
||||
|
||||
-- Dekodierung der Ausgaenge
|
||||
btn_deb <= btn_reg; --Output debounced btn reg
|
||||
|
||||
-- Ouput decode for Rotary Signals (A,B)
|
||||
process(a_debounced_reg, b_debounced_reg, a_old, b_old)
|
||||
variable state: std_logic_vector(3 downto 0);
|
||||
begin
|
||||
state := a_debounced_reg & b_debounced_reg & a_old & b_old;
|
||||
state := a_debounced_reg & b_debounced_reg & a_old & b_old; -- Concat to vector
|
||||
case state is
|
||||
when "0001" => enc_right <= '0'; enc_ce <= '1';
|
||||
when "0010" => enc_right <= '1'; enc_ce <= '1';
|
||||
when others => enc_right <= '0'; enc_ce <= '0';
|
||||
-- If you want a finer resolution you can simply add more cases here.
|
||||
-- In our case we only have 1 case for left, and one for right, which works fine.
|
||||
end case;
|
||||
end process;
|
||||
|
||||
|
||||
@@ -22,11 +22,12 @@ entity spi_driver is
|
||||
end spi_driver;
|
||||
|
||||
architecture Behavioral of spi_driver is
|
||||
type states is(S_IDLE, S_WORK);
|
||||
signal state_reg, state_next: states := S_IDLE;
|
||||
signal counter_reg, counter_next: unsigned(5 downto 0) := (others => '0');
|
||||
signal shift_reg, shift_next: unsigned(19 downto 0):= (others => '0');
|
||||
type states is(S_IDLE, S_WORK); -- FSM: Idle and Work State
|
||||
signal state_reg, state_next: states := S_IDLE; -- Current and next state register
|
||||
signal counter_reg, counter_next: unsigned(5 downto 0) := (others => '0'); -- Counter for the bit nr
|
||||
signal shift_reg, shift_next: unsigned(19 downto 0):= (others => '0'); -- Shift reg for the ouput
|
||||
begin
|
||||
-- State register process (combinational)
|
||||
REGS: process (clk, rst) is
|
||||
begin -- process start
|
||||
if rst = '1' then -- asynchronous reset (active high)
|
||||
@@ -40,32 +41,35 @@ begin
|
||||
end if;
|
||||
end process REGS;
|
||||
|
||||
mosi <= shift_reg(shift_reg'high) when state_reg=S_WORK else '0';
|
||||
sck <= '1' when state_reg=S_WORK and counter_reg(0)='1' else '0';
|
||||
cs <= '1' when state_reg =S_IDLE else '0';
|
||||
mosi <= shift_reg(shift_reg'high) when state_reg=S_WORK else '0'; -- Mosi: Highest value of shift reg when in Work state, otherwise 0
|
||||
sck <= '1' when state_reg=S_WORK and counter_reg(0)='1' else '0'; -- Sck: High when in work state and lowest bit 1 (shift will be performed when lowest bit = 0)
|
||||
cs <= '0' when state_reg =S_WORK else '1'; -- Cs (low active): Low when in state work
|
||||
|
||||
-- Next State logic process (combinational)
|
||||
NSL: process (state_reg, counter_reg, shift_reg, val) is
|
||||
begin
|
||||
state_next <= state_reg;
|
||||
counter_next <= counter_reg;
|
||||
shift_next <= shift_reg;
|
||||
|
||||
case state_reg is -- switch on current state
|
||||
when S_IDLE => -- currently in idle state
|
||||
state_next <= S_WORK;
|
||||
counter_next <= to_unsigned(0,counter_reg'length);
|
||||
|
||||
shift_next(19 downto 16) <= "0011"; --Command: Write to and Update (Power Up)
|
||||
shift_next(15 downto 12) <= "0000"; --Adress: DAC0
|
||||
-- Initialize shift reg
|
||||
shift_next(19 downto 16) <= "0011"; -- Command: Write to and Update (Power Up)
|
||||
shift_next(15 downto 12) <= "0000"; -- Adress: DAC0
|
||||
shift_next(11 downto 0) <= val; -- DAC Value (12bit)
|
||||
--shift_next(0 downto -3) <= "XXXX"; -- 4x don't care
|
||||
|
||||
when S_WORK => -- currently in work state
|
||||
if(counter_reg = 24*2 -1) then
|
||||
state_next <= S_IDLE;
|
||||
else
|
||||
counter_next<= counter_reg + 1;
|
||||
if(counter_reg = 24*2 -1) then -- all bits sent
|
||||
state_next <= S_IDLE; -- return to idle state
|
||||
else -- not all bits sent
|
||||
counter_next<= counter_reg + 1; -- increase bit counter
|
||||
end if;
|
||||
if(counter_reg(0)='1') then
|
||||
if(counter_reg(0)='1') then -- peform shift when lowest bit = 1, shift will be performed when bit = 0
|
||||
shift_next <= shift_left(shift_reg,1);
|
||||
end if;
|
||||
when others => null; -- do nothing, if we are in a different state
|
||||
|
||||
Reference in New Issue
Block a user