Files
ironwood_plots/ironwood_plots.R
2024-06-10 18:29:00 +02:00

160 lines
4.6 KiB
R

##
# Libary imports
##
library(readODS)
library(tidyverse)
library(dplyr)
library(leaflet)
library(RColorBrewer)
##
# parse the input data, declare global values and auxiliary data
##
# read a data frame from the ods document
df <- read_ods(path = "data/ironwood_data_cleaned.ods",
sheet = 1)
# site base location (to zero in the map)
population_lat <- "-33.943917"
population_lon <- "23.507389"
# vector of condition names corresponding to the health index numbers
condition_names <- c("healthy", "light damage",
"medium damage", "severe damage",
"at point of death")
# colors for each condition
condition_colors <- c("green", "yellow", "orange", "red", "black")
##
# 1.) asses the tree health of the entire population
# create an overview of the populations health
##
# Calculate the percentage of trees in each health condition
percentage <- proportions(table(df$tree_health_index)) * 100
# Now, let's create the bar plot
barplot(percentage,
names.arg = condition_names,
main = "Overview of Tree Health Index",
xlab = "Health Index",
ylab = "Percentage of Trees",
ylim = c(0, max(percentage) + 10),
col = condition_colors,
border = "black")
# Adding a legend
legend("topright",
legend = condition_names,
fill = condition_colors)
# Adding a box around the plot
#box()
# Add labels with the percentage of trees in each bar
text(x = barplot(percentage, plot = FALSE),
y = percentage,
labels = paste0(round(percentage, 1), "%"),
pos = 3)
##
# 2. Create a stacked barchart that represents all site and their health data
##
# Convert tree_health_index to factor for correct ordering in the barplot
df$tree_health_index <- factor(df$tree_health_index, levels = 0:4, ordered = TRUE)
# Create a new data frame with counts of each health index for each site
health_counts <- df %>%
group_by(site_num, tree_health_index) %>%
summarise(count = n())
# Pivot the data frame to wide format for ggplot
health_counts_wide <- pivot_wider(health_counts, names_from = tree_health_index, values_from = count, values_fill = list(count = 0))
# plot each bar
ggplot(health_counts_wide, aes(x = site_num)) +
geom_bar(aes(fill = `0`), position = "stack", width = 0.5) +
geom_bar(aes(fill = `1`), position = "stack", width = 0.5) +
geom_bar(aes(fill = `2`), position = "stack", width = 0.5) +
geom_bar(aes(fill = `3`), position = "stack", width = 0.5) +
geom_bar(aes(fill = `4`), position = "stack", width = 0.5) +
labs(x = "Site Number", y = "Count", fill = "Health Index") +
scale_fill_manual(values = c("#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e")) + # Custom colors for each health index
theme_minimal()
# rename
colnames(health_data) <- paste("Site", seq(1,20), sep=" ")
rownames(health_data) <- condition_names
# create color palette:
coul <- brewer.pal(3, "Pastel2")
# Transform this data in %
data_percentage <- apply(data, 2, function(x){x*100/sum(x,na.rm=T)})
# Make a stacked barplot--> it will be in %!
barplot(df$tree_health_index, col=coul , border="white", xlab="group")
##
# 3. perform a shapiro-wilk normality test
# - the goal is to see if the health is normally distributed
##
# Perform Shapiro-Wilk test
shapiro_test <- shapiro.test(df$tree_health_index)
# Print the test results
print(shapiro_test)
# Check the p-value
p_value <- shapiro_test$p.value
# Interpret the results
if (p_value < 0.05) {
print("The data is not normally distributed (reject the null hypothesis)")
} else {
print("The data is normally distributed (fail to reject the null hypothesis)")
}
##
# 4. try to fit health and location data in one plot
##
# create a subset of the site locations
sites <- df[complete.cases(df$site_num),]
# ensure all coordinates are numeric
sites$site_lat <- as.numeric(sites$site_lat)
sites$site_lon <- as.numeric(sites$site_lon)
# create a map from our base location
map <- leaflet() %>%
setView(lng = population_lon,
lat = population_lat,
zoom = 16) %>%
addProviderTiles(
provider = "Esri.WorldImagery",
options = providerTileOptions(
opacity = 0.5
)
) %>%
addCircleMarkers(
data = df,
lng = ~tree_lon,
lat = ~tree_lat,
radius = 1,
color = ~condition_colors[tree_health_index+1],
opacity = 1,
fillOpacity = 1
) %>%
addCircleMarkers(
data = sites,
lng = ~site_lon,
lat = ~site_lat,
radius = 40,
fill = FALSE,
color = "black",
opacity = 0.5
)
# show map
map
##
# ToDo Tasks:
##
# 4. calculate the average DBH and try to correlate it with the health index
# 5. plot health indices of each site on a map and try to find patterns