add histogram and shapiro-wilk test
This commit is contained in:
67
ironwood_plots.R
Normal file
67
ironwood_plots.R
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
##
|
||||||
|
# Libary imports
|
||||||
|
##
|
||||||
|
|
||||||
|
library(readODS)
|
||||||
|
library(tidyverse)
|
||||||
|
library(dplyr)
|
||||||
|
|
||||||
|
|
||||||
|
# read a data frame from the ods document
|
||||||
|
df <- read_ods("ironwood_data_cleaned.ods", sheet = 1)
|
||||||
|
|
||||||
|
|
||||||
|
##
|
||||||
|
# asses the tree health
|
||||||
|
##
|
||||||
|
|
||||||
|
# create a vector with our condition names
|
||||||
|
condition_names <- c("healthy", "light damage", "medium damage", "severe damage", "at point of death")
|
||||||
|
# Define colors for each condition
|
||||||
|
condition_colors <- c("green", "yellow", "orange", "red", "black")
|
||||||
|
# Now, let's create the histogram
|
||||||
|
hist(df$Tree_Health_Index,
|
||||||
|
breaks = 0:5 - 0.5, # Setting breaks at midpoints between integers
|
||||||
|
main = "Distribution of Tree Health Index",
|
||||||
|
xlab = "Health Index",
|
||||||
|
ylab = "Number of Trees",
|
||||||
|
col = condition_colors, # Assigning colors based on the health index values
|
||||||
|
border = "black", # Border color of the bars
|
||||||
|
xlim = c(-0.5, 4.5), # Setting x-axis limits to include all health index values
|
||||||
|
ylim = c(0, max(table(df$Tree_Health_Index))*1.1), # Setting y-axis limits slightly above the maximum frequency
|
||||||
|
axes = FALSE) # Suppressing axes for customization
|
||||||
|
# Add axis labels
|
||||||
|
axis(1, at = 0:4, labels = condition_names)
|
||||||
|
axis(2)
|
||||||
|
# Adding a legend
|
||||||
|
legend("topright", legend = condition_names, fill = condition_colors, border.col = "black")
|
||||||
|
# Add a title
|
||||||
|
title(main = "Distribution of Tree Health Index")
|
||||||
|
# Adding a grid
|
||||||
|
grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")
|
||||||
|
# Adding a box around the plot
|
||||||
|
box()
|
||||||
|
|
||||||
|
##
|
||||||
|
# Perform a shapiro-wilk normality test
|
||||||
|
##
|
||||||
|
|
||||||
|
# Perform Shapiro-Wilk test
|
||||||
|
shapiro_test <- shapiro.test(df$Tree_Health_Index)
|
||||||
|
# Print the test results
|
||||||
|
print(shapiro_test)
|
||||||
|
# Check the p-value
|
||||||
|
p_value <- shapiro_test$p.value
|
||||||
|
# Interpret the results
|
||||||
|
if (p_value < 0.05) {
|
||||||
|
print("The data is not normally distributed (reject the null hypothesis)")
|
||||||
|
} else {
|
||||||
|
print("The data is normally distributed (fail to reject the null hypothesis)")
|
||||||
|
}
|
||||||
|
|
||||||
|
##
|
||||||
|
# Tasks:
|
||||||
|
##
|
||||||
|
|
||||||
|
# 1. find average dbh
|
||||||
|
# 2. find
|
||||||
Reference in New Issue
Block a user