#!/bin/env python import matplotlib.pyplot as plt def p_meet_positive(groupsize:int): ''' Naive approach, only works if each individual gets tested. ''' active_cases = 777.69 # 7 day incidence rate population_size = 100000 # sample size -> per 100k p_positive = active_cases / population_size return (1 - ( 1 - p_positive )**groupsize) * 100 def p_meet_positive_bayes(groupsize:int): ''' Bayesian approach ''' n_positive_tests = 1863.6 # number of positive tests in the last 14 days n_tests = 7366.1 # total number of tests in the last 14 days n_population = 100000 # sample size -> per 100k for switzerland p_test_positive = 0.3 # probability of a positive person getting tested (0.5 is optimistic...) p_positive_test = n_positive_tests / n_tests p_test = n_tests / n_population p_positive = p_positive_test * p_test / p_test_positive return (1 - ( 1 - p_positive )**groupsize) * 100 def plot_data(data): plt.plot(data) plt.title("probability of meeting a covid positive in groupsize of n") plt.xlabel("group size / n") plt.ylabel("probability") plt.grid(linestyle='--', linewidth='0.1') plt.show() data = [] for i in range(1, 70): data.append(p_meet_positive_bayes(i)) print(f'The chance of meeting a positive in a group of {i} is: {p_meet_positive_bayes(i)}%') plot_data(data)